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Abstract

Individuals are often faced with temptations that can lead them astray from long-term
goals. We’re interested in developing interventions that steer individuals toward making
good initial decisions and then maintaining those decisions over time. In the realm of
financial decision making, a particularly successful approach is the prize-linked savings
account: individuals are incentivized to make deposits by tying deposits to a periodic lottery
that awards bonuses to the savers. Although these lotteries have been very effective in
motivating savers across the globe, they are a one-size-fits-all solution. We investigate
whether customized bonuses can be more effective. We formalize a delayed-gratification
task as a Markov decision problem and characterize individuals as rational agents subject to
temporal discounting, costs associated with effort, and moment-to-moment fluctuations in
willpower. Our theory is able to explain key behavioral findings in intertemporal choice. We
created an online delayed-gratification game in which the player scores points by choosing a
queue to wait in and patiently advancing to the front. Data collected from the game is fit to
the model, and the instantiated model is then used to optimize predicted player performance
over a space of incentives. We demonstrate that customized incentive structures can improve
goal-directed decision making.

Should you go hiking today or work on that manuscript? Should you have a slice of
cake or stick to your diet? Should you upgrade your flat-screen TV or contribute to your
retirement account? Individuals are regularly faced with temptations that lead them astray
from long-term goals. These temptations all reflect an underlying challenge in behavioral
control that involves choosing between actions leading to small but immediate rewards and
actions leading to large but delayed rewards. We introduce a formal model of this delayed
gratification decision task, extending the Markov decision framework to incorporate the
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psychological notion of willpower, and using formal models to optimize behavior by designing
incentives to assist individuals in achieving long-term goals.

Consider the serious predicament with retirement planning in the United States. Only 55%
of working-age households have retirement account assets—whether an employer-sponsored
plan or an IRA—and the median account balance for near-retirement households is $14,500.
Even considering households’ net worth, 2/3 fall short of conservative savings targets based
on age and income (Rhee and Boivie, 2015). Furthermore, 40% of every dollar contributed to
the accounts of savers under age 55 simultaneously flows out of the retirement systems, not
counting loans to oneself (Argento et al., 2015). In 2013, the US government and nonprofits
spent $670M on financial education, yet financial literacy accounts for a miniscule 0.1% of
the variance in financial outcomes (Fernandes et al., 2014).

One technique that has been extremely successful in encouraging savings, primarily in
Europe and the developing world but more recently in the US as well, is the prize linked
savings account (PLSA) (Kearney et al., 2010). The idea is to pool a fraction of the interest
from all depositors to fund a prize awarded by periodic lotteries. Just as ordinary lotteries
entice individuals to purchase tickets, the PLSA encourages individuals to save. Disregarding
the fact that lotteries function in part because individuals overvalue low-probability gains
(Kahneman and Tversky, 1979), the core of the approach is to offer savers the prospect of
short-term payoffs in exchange for them committing to the long term. Although the account
yields a lower interest rate to fund the lottery, the PLSA increases the net expected account
balance due to greater commitment to participation.

The PLSA is a one-size-fits-all solution. A set of incentives that that work well for
one individual or one subpopulation may not be optimal for another. In this article, we
investigate approaches to customizing incentives to an individual or a subpopulation with
the aim of achieving greater adherence to long-term goals and ultimately, better long-term
outcomes for the participants. Our approach involves: (1) building a model to characterize
the behavior of an individual or group, (2) fitting the model with behavioral data, (3) using
the model to determine an incentive structure that optimizes outcomes, and (4) validating
the model by showing better outcomes with model-derived incentives than with alternative
incentive structures.

1. Intertemporal Choice

Intertemporal choice involves decisions that produce gains and losses at different points
in time. How an individual interprets delayed consequences influences the utility or value
associated with a decision. When consequences are discounted with the passage of time,
decision making is biased toward more immediate gains (and more distant losses). The delay
discounting task is often used to study intertemporal choice (Green and Myerson, 2004).
Individuals are asked to choose between two alternatives, e.g., $1 today versus $X in Y days.
By identifying the X that yields subjective indifference for a given Y , one can estimate an
individual’s discounting of future outcomes. Discount rates vary across individuals yet show
stability over extended periods of time (Kirby, 2009).

This paradigm involves a single, hypothetical decision and reveals the intrinsic future
value of an outcome. However, it does not address the temporal dynamics of behavior during
a delay period. Once an initial decision is made to wait for a large reward, some scenarios
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permit an individual to abandon the decision at any instant in favor of the small immediate
reward. For example, in the classic marshmallow test (Mischel and Ebbesen, 1970), children
are seated at a table with a single marshmallow. They are allowed to eat the marshmallow,
but if they wait while the experimenter steps out of the room, they will be offered a second
marshmallow when the experimenter returns. In this delayed gratification task, children
must continually contemplate whether to eat the marshmallow or wait for two marshmallows.
Their behavior depends not only on the hypothetical discounting of future rewards but on an
individual’s willpower—their ability to maintain focus on the larger reward and not succumb
to temptation before the experimenter returns. Defection at any moment eliminates the
possibility of the larger reward.

The marshmallow test achieved renown not only because it turns out to be predictive
of later life outcomes (Mischel et al., 1989), but because it is analogous to many situations
involving delayed gratification. Like the marshmallow test, some of these situations have an
unspecified time horizon (e.g., exercise, waiting for an elevator, spending during retirement).
However, others have a known horizon (e.g., avoiding snacks before dinner, saving for
retirement, completing a college degree). Our work addresses the case of a known or assumed
horizon.

Beyond whether the horizon is known or not, delayed-gratification tasks may also be
characterized in terms of the number of opportunities to obtain the delayed reward. The
marshmallow test is one shot, but many true-to-life scenarios have an iterative nature. For
example, in retirement planning, the failure to contribute to the account one month does not
preclude contributing the next month. Another intuitive example involves allocating time
within a work day. One must choose between tasks that are relatively quick and provide
a moment of satisfaction (e.g., answering email, cleaning a desk top) and those that are
more effortful but also yield a greater sense of accomplishment (e.g., editing a paper for
submission to a journal, reading a research article). Our work addresses both one-shot and
iterated delayed-gratification tasks. For such tasks, we’re interested in developing personalized
interventions that assist individuals both in making good initial decisions and in maintaining
those decisions over time.

2. Theories of Intertemporal Choice

Nearly all previous conceptualizations of intertemporal choice have focused on the shape of
the discounting function and the initial ‘now versus later’ decision, not the time course. One
exception is the work of McGuire and Kable (2013) who frame failure to postpone gratification
as a rational, utility-maximizing strategy when the time at which future outcomes materialize
is uncertain. Our theory is complementary in providing a rational account in the known time
horizon situation.

There is a rich literature on treating human decision making from the framework of
Markov decision processes (MDPs; e.g., Shen et al., 2014; Niv et al., 2012), but this research
does not directly address intertemporal choice.

Kurth-Nelson and Redish (2010, 2012) have explored a reinforcement learning framework
to model precommitment in decision making as a means of preventing impulsive defections.
This interesting work focuses on the initial decision whether to precommit rather than the
ongoing possibility of defection. To the best of our knowledge, we are the first to adopt an
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Figure 1: Finite-state environment formalizing (a) the one-shot delayed-gratification task;
(b) the iterated delayed-gratification task; (c) the iterated delayed-gratification
task with variable delays and LL outcomes; and (d) an efficient approximation to
the iterated delayed-gratification task, suitable when episodes are independent of
one another.

MDP perspective on intertemporal choice, a field which has relied primarily primarily on
verbal, qualitative accounts.

One challenge to modeling behavior with MDPs, whether in the framework of reinforce-
ment learning or dynamic programming, is that it is mathematically convenient to assume
exponential discounting, whereas studies of human intertemporal choice support hyperbolic
discounting (Frederick et al., 2002). Kurth-Nelson and Redish (2010) have proposed a solution
to this issue by exploiting the fact that a hyperbolic function can be well approximated by a
mixture of exponentials. In the work we present, we assume exponential discounting, but our
work could readily be extended in the same manner as Kurth-Nelson and Redish (2010).

3. Formalizing Delayed-Gratification Tasks as a Markov Decision
Problem

In this section, we formalize a delayed-gratification task as a Markov decision problem, which
we will refer to as the DGMDP. We assume time to be quantized into discrete steps and
we focus on situations with a known or assumed time horizon, denoted ⌧ . At any step, the
agent may defect and collect a small reward, or the agent may persist to the next step,
eventually collecting a large reward at step ⌧ . We use µSS and µLL to denote the smaller
sooner (SS) and larger later (LL) rewards. Figure 1a shows a finite-state representation of the
one-shot task with terminal states LL and SS that correspond to resisting and succumbing
to temptation, respectively, and states for each time step between the initial and final times,
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t 2 {1, 2, ..., ⌧}. Rewards are associated with state transitions. The possibility of obtaining
intermediate rewards during the delay period is annotated via µ1:⌧�1 ⌘ {µ1, ..., µ⌧�1}, which
we return to later. With exponential discounting, rewards n steps ahead are devalued by a
factor of �n, 0  � < 1.

Given the DGMDP, an optimal decision sequence is trivially obtained by value iteration.
However, this sequence is a poor characterization of human behavior. With no intermediate
rewards (µ1:⌧�1 = 0), it takes one of two forms: either the agent defects at t = 1 or the
agent persists through t = ⌧ . In contrast, individuals will often persist some time and then
defect, and when placed into the same situation repeatedly, behavior is nondeterministic.
For example, replicability on the marshmallow test is quite modest (⇢ < 0.30: Mischel et al.,
1988).

The discrepancy between human delayed-gratification behavior and the optimal decision-
making framework might indicate an incompatibility. However, we prefer a bounded rationality
perspective on human cognition according to which behavior is cast as optimal but subject
to cognitive constraints. We claim two specific constraints.

1. Individuals exhibit moment-to-moment fluctuations in willpower based on factors such as
sleep, hunger, mood, etc. Low willpower causes an immediate reward to seem more tempt-
ing, and high willpower, less tempting. We characterize willpower as a one-dimensional
Gaussian process, W = {Wt}, with w1 ⇠ Gaussian(0,�

2
1) and wt ⇠ Gaussian(wt�1,�

2
).

We suppose that willpower modulates an individual’s subjective value of defecting at step
t:

Q(t, w;defect) = µSS � w, (1)

where Q(s; a) denotes the value associated with performing action a in state s, and the
state space consists of the discrete step t and the continuous willpower level w.

2. Behavioral, economic, and neural accounts of decision making suggest that effort carries a
cost, and that rewards are weighed against the effort required to obtain it (e.g., Kivetz,
2003). This notion is incorporated into the model via an effort cost, µE associated with
persevering:

Q(t, w;persist) =

(
µE + µt + � EWt+1|Wt=wV (t+ 1, wt+1) for t < ⌧

µLL for t = ⌧

(2)

where V (t, w) ⌘ maxa Q(t, w; a). (3)

With these two constraints, we will show that the model not only has adequate expressive
power to fit behavioral data, but also has the explanatory power to predict experimental
outcomes.

The one-shot DGMDP in Figure 1a can be extended to model the iterated task (Figure 1b),
even when there is variability in the reward (µLL) or duration (⌧) across episodes (Figure 1c).1

1. Figures 1b,c describe an indefinite series of episodes. If the total number of episodes or steps is constrained,

as in any realistic scenario (e.g., an individual has eight hours in the work day to perform tasks like

answering email), then the state must be augmented with a representation of remaining time. We dodge

this complication by modeling situations in which the ‘end game’ is not approaching, e.g., only the first

half of a work day.
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Finally, it is straightforward to show that the solution to the iterated DGMDPs in Figures 1b
or 1c is identical to the solution to the simpler and more tractable one-shot DGMDP in
Figure 1d under certain constraints (see Supplementary Materials). Essentially, Figure 1d
models the choice between the LL reward or a sequence of SS rewards matched in total
number of steps, effectively comparing the reward rates for LL and SS, the critical variables
in the iterated DGMDP.

To summarize, we have formalized one-shot and iterative delayed-gratification task with
known horizon as a Markov decision problem with parameters ⇥task ⌘ {⌧, µSS, µLL,µ1:⌧�1},
and a constrained rational agent parameterized by ⇥agent ⌘ {�,�1,�, µE}. We now turn to
solving the DGMDP and characterizing its properties.

3.1 Solving The Delayed-Gratification Markov Decision Problem (DGMDP)

The simple structure of the environment allows for a backward-induction solution to the
Bellman equation (Equation 2). Although the continuous willpower variable precludes an
analytical solution for V (t, w), we construct a piecewise linear approximation (PLA) over
w for each step t. To justify the PLA, consider the shape of V (t, w). With high willpower
(w ! 1), the agent almost certainly persists to the LL reward and the function asymptotes
at the discounted µLL. With low willpower (w ! �1), the agent almost certainly defects
and the function approaches µSS � w. Thus, both extrema of the value function are linear
with known slope and intercept. At step ⌧ , these two linear segments exactly define the
value function. At t < ⌧ , there is an intermediate range within which small fluctuations in
willpower can influence the decision and the expectation in Equation 2 yields a weighted
mixture of the two extrema, which is well fit by a single linear segment—defined by its
slope at and intercept bt. With V (t, w) expressed as a PLA, the expectation in Equation 2
becomes:

EWt|Wt�1=wV (t, wt) =�

�
z

�
t

�
(µSS � w) +

�
�

�
z

+
t

�
� �

�
z

�
t

��
(bt + atw)

+

�
1� �

�
z

+
t

��
ct + ��(z

�
t ) + �at

�
�(z

�
t )� �(z

+
t )

�
,

(4)

where �(.) and �(.) are the cdf and pdf of a standard normal distribution, respectively, and the
standardized segment boundaries are z

�
t = �

�1
[(µSS � bt)/(at +1)�w] and z

+
t = �

�1
[(ct �

bt)/at�w]. The backup is seeded with z

�
⌧ = z

+
⌧ = �

�1
(µSS�µLL�w) and a⌧ = b⌧ = c⌧ = µLL.

After each backup step, a Levenberg-Marquardt nonlinear least squares fit obtains at�1 and
bt�1; ct�1—the value of steadfast persistence—is obtained by propagating the discounted
reward for persistence: ct�1 = µE + µt + �ct.

Figure 2a shows the value as a function of willpower at each step of an eight step DGMDP
with an LL reward twice that of the SS reward, like the canonical marshmallow test. Both the
exact value-function formulation (Equation 4) and the corresponding PLA are presented in
colored and black lines, respectively. To ensure accuracy of the estimate and to eliminate an
accumulation of estimation errors, we have also used a fine piecewise constant approximation
in the intermediate region, yet the model output is almost identical.

Using the value function, we can characterize the agent’s behavior in the DGMDP via
the likelihood of defecting at various steps. With D denoting the defection step, we have the
hazard probability

ht ⌘ P (D = t|D � t) ⌘ P (Wt < w

⇤
t |W1 � w

⇤
1, ...,Wt�1 � w

⇤
t�1), (5)
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Figure 2: (a) Value function for a DGMDP with ⌧ = 8, � = .25, �1 = .50, � = .92,
µE = µt = 0, µLL = 2, µSS = 1, exact (colored curves) and piecewise linear
approximation (black lines). (b) Hazard functions for the parameterization in (a)
(solid blue curve), with a higher level of LL reward (red curve), and with a shorter
delay period, ⌧ = 6 (dashed blue curve).

where w

⇤ is the willpower threshold that yields action indifference, Q(t, w

⇤
;defect) =

Q(t, w

⇤
;persist). To represent the posterior distribution over willpower at each non-

defection step, we initially used a particle filter but found a computationally more efficient
and stable solution with quantile-based samples. We approximate the W1 prior and �W

with discrete, equal probability q-quantiles. We reject values for which defection occurs, and
then propagate Wt+1 = Wt +�W which results in up to q

2 samples, which we thin back
to q-quantiles at each step. Using q = 1000 produces nearly identical results to selecting a
much higher density of samples.

The solid blue curve in Figure 2b shows the hazard function for the DGMDP in Figure 2a.
Defection rates drop as the agent approaches the goal. Defection rates also scale with the LL
reward, as illustrated by the contrast between the solid blue and red curves. Finally, defection
rates depend both on relative and absolute steps to goal: contrasting the solid and dashed
blue curves, corresponding to ⌧ = 8 and ⌧ = 6, respectively, the defection rate at a given
number of steps from the goal depends on ⌧ . We will shortly show that human behavioral
data exhibit this same qualitative property. Interestingly, the correlation in willpower from
one step to the next is critical in obtaining this property. When willpower is independent
from step to step, i.e., wt ⇠ Gaussian(0,�

2
), defection rates depend only on absolute steps

to goal. Thus, moment-to-moment correlation in willpower is essential for modeling human
behavior.

3.2 Behavioral Phenomena Explained

We consider the solution of the DGMDP as a rational theory of human cognition. It is meant
to explain both an individual’s initial choice (“Should I open a retirement account?”) as well
as the temporal dynamics of sustaining that choice (“Should I withdraw the funds to buy a
car?”)
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Our theory explains two key phenomena in the literature. First, failure on a DG task is
sensitive to the relative magnitudes of the SS and LL rewards (Mischel, 1974). Figure 2b
presents hazard functions for two reward magnitudes. The probability of obtaining the LL
reward is greater with µLL/µSS = 3 than with µLL/µSS = 2. Figure 2b can also accommodate
the finding that environmental reliability and trust in the experimenter affect outcomes in
the marshmallow test (Kidd et al., 2012): in unreliable or nonstationary environments, the
expected LL reward is lower than the advertised reward, and the DGMDP is based on reward
expectations. Second, a reanalysis of data from a population of children performing the
marshmallow task shows a declining hazard rate over the task period of 7 minutes (McGuire
and Kable, 2013). The rapid initial drop in the empirical curve looks remarkably like the
curves in Figure 2b. One might interpret this phenomenon as a finish-line effect: the closer
one gets to a goal, the greater is the commitment to achieve the goal. However, the model
suggests that this behavior arises not from abstract psychological constructs but because of
correlations in willpower over time: if an individual starts down the path to an LL reward,
the individual’s willpower at that point must be high. The posterior willpower distributions
reflect the elimination of individuals with low momentary willpower, which contributes to
the declining hazard rate. Also contributing is the exponential increase in value of the
discounted LL reward as the agent advances through the DGMDP. McGuire and Kable
(2013) explain the empirical hazard function via a combination of uncertainty in the time
horizon and time-fluctuating discount rates. Our theory shows that these strong assumptions
are not necessary, and our theory can address situations with a well delineated horizon such
as retirement saving. Additionally, our theory aims to move beyond population data and
explain the granular dynamical behavior of an individual.

4. Optimizing Incentives

With a computational theory of the DG task in hand, we now explore a mechanism-design
approach (Nisan and Ronen, 1999) aimed at steering individuals toward improved long-term
outcomes. We ask whether we can provide incentives to rational value-maximizing agents
that will increase their expected reward subject to constraints on the incentives.

We focus on an investment scenario roughly analogous to a prize-linked savings account
(PLSA). Suppose an individual has x dollars which they can deposit into a bank account
earning interest at rate r, compounded annually. At the start of each year, they decide
whether to continue saving (persist) or to withdraw and spend their entire savings with
interest accumulated thus far (defect).2 Our goal to assist them in maximizing the profit
they reap over ⌧ � 1 years from their initial investment. Our incentive mechanism is a a
schedule of lotteries. We refer to expected lottery distributions as bonuses, even though they
are funded through the interest earned by a population of individuals, like the prizes of the
PLSA.

With µt denoting the bonus awarded in year t and µ1:⌧�1 denoting the set of scheduled
bonuses, our goal as mechanism designers is to identify the schedule that maximizes the

2. Although this all-or-none withdrawal of savings is not entirely realistic, it reduces the decision space to

correspond with the FSM in Figure 1a. Were we to allow intermediate levels of withdrawal, the simulation

would yield intermediate benefits of incentives.
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Figure 3: Bonus optimization for an agent with �1 = 50, � = 30, µE = 0, and � 2 [0.55, 0.95].
(a) Expected payoff for the one-shot DGMDP for various bonus scenarios, including
no bonus and optimal bonuses with lottery odds 1:0, 1:10, 1:100, and 1:1000. In
these simulations, the interest-accrual scheme is used to constrain bonuses and
payoffs. (b) Optimal bonus amounts at each step for various � and lottery 1:0
(certain win), on the scale of an x = 100 initial pool of funds. (c) Expected
payoff per time step for the iterated DGMDP for various bonus scenarios. In these
simulations, the bonus-limits scheme is used to constrain bonuses and payoffs.

expected net accumulation from an individual’s investment:

µ⇤
1:⌧�1 = argmaxµ1:⌧�1

P⌧
t=1 P (D = t|µ1:⌧�1)

h
bt +

Pt�1
t0=1 µt0

i
, (6)

where bt is the amount banked at the start of year t, with b1 = x and bt+1 = (1 + r)(bt � µt),
and D is the year of defection, where D = 1 represents immediate defection and D = ⌧

represents the the account reaching maturity. Defection probabilities are obtained from the
theory (Equation 5).

To illustrate this approach, we conducted a simulation with � 2 [0.55, 0.95], ⌧ = 10,
r = 0.1, and x = 100, comparing an agent’s expected accumulation without bonuses and
with optimal bonuses. Optimization is via direct search using the simplex algorithm over
unconstrained variables pt ⌘ logit(µt/bt), representing the proportion of the bank being
distributed as a bonus.

We first consider the case of deterministic bonuses: the agent receives bonus µt in year
t with certainty. Figure 3a shows the expected payoff as a function of an agent’s discount
factor � for the scenario with no bonuses (purple curve) versus optimal bonuses awarded
with probability 1.0 (light blue curve, labeled with the odds of a bonus being awarded, ‘1:0’).
For reference, the asymptotic SS and LL payoffs are shown with dotted and dashed lines,
respectively.

With high discounting, this simulation yields a modest (⇠ 10%) improvement in an
individual’s expected accumulation by providing bonuses at the end of the early years and
going into the final year (Figure 3b). Bonuses are recommended only when the gain from
encouraging persistence beats the loss of interest on an awarded bonus. With low discounting,
the model optimization recommends no bonuses. Thus, the simulation recommends different
incentives to individuals depending on their discount factors.
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Now consider a lottery such as that conducted for the PLSA. If individuals operate based
on expected returns, an uncertain lottery with odds 1:↵ and payoff (↵ + 1)µt would be
equivalent to a certain payoff of µt. However, as characterized by prospect theory Kahneman
and Tversky (1979), individuals overweight low probability events. Using median parameter
estimates from cumulative prospect theory Tversky and Kahneman (1992) to infer subjective
probabilities on lotteries with 1:10, 1:100, and 1:000 odds, we optimize bonuses for these
cases.3 As depicted by the three upper curves in Figure 3a, lotteries such as the PLSA can
significantly boost the benefit of incentive optimization.

Lotteries and interest accrual are not suitable for all delayed-gratification tasks. For
instance, one would not wish to encourage a dieter by offering a lottery for a 50-gallon tub
of ice cream or the promise of a massive all-one-can-eat desert buffet at the conclusion of
the diet. To demonstrate the flexibility of our framework, we posit a bonus-limit scheme as
an alternative to the interest-accrual scheme in which up to nb bonuses of fixed size can be
awarded and the optimization determines the time steps at which they are awarded. We
conducted a simulation with the iterated DGMDP (Figure 1d) using � 2 [0.55, 0.95], ⌧ = 10,
awarding of nb  4 bonuses each of value 50, µSS = 100, and µLL = 150⌧ � 50nb. Multiple
bonuses could be awarded in the same step, but bonuses were limited such that no defection
could achieve a reward rate greater than µSS. This set up anticipates human experiments
that we report later in the article.

Figure 3c shows expected payoff per step, ranging from 100 from the SS reward to 150
for the LL reward, for the no-bonus condition (purple curve) and conditions with lotteries
having odds 1:0, 1:10, 1:100, and 1:1000. As with the alternative DGMDP formulation with a
single-shot task and the interest-based framework, optimization of bonuses achieves benefits
which depend on � and lottery odds.

5. Experiments

We have argued that our modeling framework is flexible enough to describe a variety of
delayed gratification tasks, both one shot and interative, with variable payoff and incentive
structures. This framework provides a potential explanation of human cognition, under the
conjecture that individuals can be cast as bounded rational agents who seek to maximize
their payoffs given cognitive constraints such as discounting and fluctuations in willpower. If
this conjecture is supported, the framework should allow us to determine incentives that will
shape behavioral outcomes.

Typically, support for a model is obtained by comparing it to alternatives and arguing
that one model is better on grounds of parsimony or predictive power. With no existing
models suited to explaining the moment-to-moment dynamics of behavior, our strategy
instead is to show first that the model is consistent with behavior by fitting model parameters
to behavioral data, and second, that the fitted, fully constrained model can make strong
predictions concerning the outcomes of subsequent experiments.

To collect behavioral data, we created a simple online delayed-gratification game in which
players score points by waiting in a queue, much as diners score delicious foods by waiting
their turn at a restaurant buffet (Figure 4a). The upper queue is short, having only one

3. According to prospect theory, the 1:10, 1:100, and 1:1000 lotteries yield overweighting by factors of 1.86,

5.50, and 14.40, respectively.
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(a) (b)

Figure 4: The queue-waiting game. (a) The player (red icon) is in the vestibule, prior to
choosing a queue. Queues advance right to left. Points awarded per queue are
displayed left of the queue. (b) A snapshot of the game taken while the queues
advance. As described in the text, this condition includes bonuses at certain
positions in the long queue. Point increments are flashed as they are awarded.

position, and delivers a 100 point reward when the player is serviced. The lower queue is
long, having ⌧ positions, and delivers a 100⌧⇢ point reward when the player is serviced.
The reward-rate ratio, ⇢, is either 1.25 or 1.50 in our experiments. The player starts in a
vestibule (right side of screen) and selects a queue with the up and down arrow keys. The
game updates at 2000 msec intervals, at which point the player’s request is processed and the
queues advance (from right to left). Upon entering the short queue, the player is immediately
serviced. Upon entering the long queue, the player immediately advances to the next-to-last
position as the queue shuffles forward. With every tick of the game clock, the player may hit
the left-arrow key to advance in the long queue or the up-arrow key to defect to the short
queue. If the player takes no action, the simulated participants behind the player jump past.
When the player defects to the short queue, the player is immediately serviced. When points
are awarded, the screen flashes the points and a cash register sound is played, and the player
returns to the vestibule and a new episode begins. In our initial experiments, the long-queue
length ⌧ is uniformly drawn from {4, 6, 8, 10, 12, 14} for each epsiode.

Note that the reward rate (points per action) for either queue does not depend on the
long-queue length. Because of this constraint, each episode is functionally decoupled from
following episodes. That is, the optimal action for the current episode will not depend on
upcoming episodes.4 Due to this fact and the time-constrained nature of the game, the
iterated DGMDP in Figure 1d is appropriate for describing a rational player’s understanding
of the game. This DGMDP focuses on reward rate and treats a defection as if the player
continues to defect until ⌧ steps are reached, each step delivering the small reward. In
contrast to Figure 1c, Figure 1d is not concerned with the interdependence of episodes. The
vestibule in Figure 4a corresponds to state 1 in Figure 1d and lower queue position closest to
the service desk to state ⌧ . Note the left-to-right reversal of the two Figures, which has often
confused the authors of this article.

Participants were recruited to play the game for five minutes via Amazon Mechanical
Turk. In our analyses of player behavior, we remove the first and last thirty seconds of play.
At the start, players are learning the game actions; at the end, players may not have sufficient
time to traverse the long queue and defection is the optimal strategy. Participants are paid

4. A dependence does occur in the final seconds of the game, where the player may not have sufficient time

to complete the long queue. We handle this case by discarding data toward the end of the game.
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$0.80 to play and are awarded a score-based bonus. They are required to perform at least
one action every ten seconds or the experiment terminates and their data are rejected.

5.1 Experiment 1: Varying Reward Magnitude

In Experiment 1, we manipulated the reward-rate ratio. Twenty different participants were
tested for each ⇢ 2 {1.25, 1.50}. Figure 5a shows the reward accumulation by individual
participants in the two conditions as a function of time within the session. The two dashed
black lines represent the reward that would be obtained by deterministically performing the
SS or LL action at each tick of the game clock. (Participants are not required to act every
tick, but they are warned after 7 sec and rejected after 14 sec if they fail to act.) The traces
show that some participants had a strong preference for the short queue, others had a nearly
perfect preference for the long queue, and still others alternated between strategies. The
variability in strategy over time within an individual suggests that they did not simply lock
into a fixed, deterministic action sequence.

For each participant, each queue length, and each of the ⌧ positions in a queue, we
compute the fraction of episodes in which the participant defects at the given position. We
average these proportions across participants and then compute empirical hazard curves.
Figure 5b shows hazard curves for each of the six queue lengths and the two ⇢ conditions.
The ⇢ = 1.50 curves are lighter and are offset slightly to the left relative to the ⇢ = 1.25

curves to make the pair more discriminable. The Figure presents both human data—asterisks
connected by dotted lines—and simulation results—circles connected by solid lines. Focusing
on the human data for the moment, initial-defection rates rise slightly with queue length and
are greater for ⇢ = 1.25 than for ⇢ = 1.50. We thus see robust evidence that participants are
sensitive to game conditions.

To model the data, we set the DGMDP parameters (⇥task) based on the game config-
uration. We obtain least-squares fits to the four agent parameters (⇥agent): discount rate
� = 0.957, initial and delta willpower spreads �1 = 81.3, and � = 21.3, and effort cost
µE = �52.1. The latter three parameters can be interpreted using the scale of the SS reward,
µSS = 100 points. Although the model appears to fit the pattern of data quite well, the model
has four parameters and the data can essentially be characterized by four qualitative features:
the mean rate of initial defection, the modulation of the initial-defection rate based on queue
length and on ⇢, and the curvature of the hazard function. The model parameters have no
direct relationship to these features of the curves, but the model is flexible enough to fit many
empirical curves. Consequently, we are cautious in making claims for the model’s validity
based solely on the fit to Experiment 1. We note, however, that we investigated a variant of
the model in which willpower is uncorrelated across steps, and it produces qualitatively the
wrong prediction: it yields curves whose hazard probability depends only on the steps to the
LL reward. In contrast, the curves of the correlated-willpower account depend primarily on
the distance from the initial state, t, but secondarily on distance to the LL reward, ⌧ � t.

5.2 Experiments 2 and 3: Modulating Effort

To obtain additional support for the theory, we modified the queue-waiting game such that
the player must work harder and experiences more frustration in reaching the front of the
long queue. By increasing the required effort, we may test whether model parameters fit to
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Figure 5: (a) Game points accumulated by individual participants over time in Experiment
1. (b) Hazard curves in Experiment 1 for 6 line lengths and two reward-rate
ratios. Human data shown with asterisks and dashed lines, model fits with circles
and solid lines. (c) Hazard curves for Experiment 2, with only one free model
parameter, (d) Hazard curves for Experiment 3, with no free model parameters.

Experiment 1 will also fit new data, changing only the effort parameter, µE. To increase the
required effort, the long queue advanced only every other clock tick in an apparently random
fashion. Nonetheless, the player must press the advance key every tick to move with the
queue, thus requiring exactly two keystrokes for each action in the game FSM (Figure 1d).
The game clock in Experiment 2 updated every 1000 msec, twice the rate as in Experiment
1, and thus the overall timing was unchanged. We tested only the reward-rate ratio ⇢ = 1.50.

Figure 5c shows hazard curves for Experiment 2. Using Experiment 1 parameter settings
for �, �1, and �, we fit only the effort parameter, obtaining µE = �99.7, which is fortuitously
twice the value obtained in Experiment 1. Model fits are superimposed over the human
data. To further test the theory’s predictive power, we froze all four parameters and ran
an Experiment 3 in which we introduced a smattering of 50 and 75 point bonuses along
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Figure 6: Experiment 4. (a) Model-predicted optimal bonus sequences—early (yellow) and
late (blue) bonuses for weak and strong participants, respectively. (b) Average
reward rate for weak and strong subpopulations and three bonus conditions. Error
bars are ±1 SEM, corrected for between-subject variance (Masson and Loftus,
2003).

the path to the LL reward, adjusting the front-of-queue reward such that the reward-rate
ratio ⇢ = 1.50 was attained when traversing the entire queue (see example in Figure 4b).
Using the fully constrained model from Experiment 2, the fit obtained for Experiment 3 was
quite good (Figure 5d). The model might underpredict long-queue initial defections, but it
captures the curvature of the hazard functions due to the presence of bonuses.

5.3 Experiment 4: Customized Bonuses

In Experiment 4, we tested the effect of bonuses customized to a subpopulation. To situate
this Experiment, we reviewed the Experiment 2 data to examine inter-participant variability.
We stratified the 30 participants in Experiment 2 based on their mean reward rate per action.
This measure reflects quality of choices and does not penalize individuals who are slow.
With a median split, the weak and strong groups have average reward rates of 103 and 132,
respectively. Theoretically, rates range from 0 (always switching between lines and never
advancing) to 100 (deterministically selecting the short queue) to 150 (deterministically
selecting the long queue). We fit the hazard curves of each group to a customized �, leaving
unchanged the other parameters previously tuned to the population. We obtained excellent
fits to the distinctive hazard functions with �strong = 0.999 and �weak = 0.875.

We then optimized bonuses for each group for various line lengths. As in Figure 3c, we
searched over a bonus space consisting of all arrangements of up-to four bonuses, each worth
fifty points, allowing multiple bonuses at the same queue position.5 We subtracted 200 points
from the LL reward, maintaining a reward-rate ratio of ⇢ = 1.50 for completing the long
queue. We constrained the search such that no mid-queue defection strategy would lead to

5. We avoided the interest-accrual scheme for bonuses because it could lead to variable reward rates among

episodes in an interated DGMDP, which would introduce dependencies that invalidate treating the

iterated DGMDP in Figure 1c as equivalent to that in Figure 1d.
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⇢ > 1. A brute-force optimization yields bonuses early in the queue for the weak group, and
bonuses late in the queue for the strong group (Figure 6a).

Experiment 4 tested participants on three line lengths—6, 10, and 14—and three bonus
conditions—early, late, and no bonuses. (The no-bonus case was as in Experiment 2.)
The 54 participants who completed Experiment 4 were median split into a weak and a
strong group based on their reward rate on no-bonus episodes only. Consistent with the
model-based optimization, the weak group performs better on early bonuses and the strong
group on late bonuses (the yellow and blue bars in Figure 6b). Importantly, there is a
2 ⇥ 2 interaction between group and early versus late bonus (F (1, 51) = 11.82, p = .001)
indicating a differential effect of bonuses on the two groups. Figure 6b also shows model
predictions based the parameterization determined from Experiment 2. The model has a
perfect rank correlation with the data, and correctly predicts that both bonus conditions will
facilitate performance, despite the objectively equal reward rate in the bonus and no-bonus
conditions. That bonuses should improve performance is nontrivial: the persistence induced
by the bonuses must overcome the tendency to defect because the LL reward is lower (as we
observed in Experiment 1 with ⇢ = 1.25 versus ⇢ = 1.50).

6. Discussion

In this article, we developed a formal theoretical framework to modeling the dynamics
of intertemporal choice. We hypothesized that the theory is suitable to modeling human
behavior. We obtained support for the theory by demonstrating that it explains key qualitative
behavioral phenomena (Section 2.2) and predicts quantitative outcomes from a series of
behavioral experiments (Section 4). Although our first experiment merely suggests that the
theory has the flexibility to fit behavioral data post hoc, each following experiment used
parametric constraints from the earlier experiments, leading to strong predictions from the
theory that match behavioral evidence. The theory allows us to design incentive mechanisms
that steer individuals toward better outcomes (Section 3), and we showed that this idea
works in practice for customizing bonuses to subpopulations playing our queue-waiting game.
The theory and the behavioral evidence both show a non-obvious and non-intuitive statistical
interaction between the subpopulations and various incentive schemes. Because the theory has
just four free parameters, it is readily pinned down to make strong, make-or-break predictions.
Furthermore, it should be feasible to fit the theory to individuals as well as to subpopulations.
With such fits comes the potential for maximally effective, truly individualized approaches
to guiding intertemporal choice.

This research program is still far from demonstrating utility in incentivizing individuals
to persevere toward long-term goals such as losing weight or saving for retirement. It remains
unclear whether intertemporal choice on a long time scale will have the same dynamics as on
the short time scale of our queue-waiting game. However, the finding that reward-seeking
behavior on the time scale of eye movements can be related to reward-seeking behavior on
the time scale of weeks and months (Shadmehr et al., 2010; Wolpert and Landy, 2012) leads
us to hope for temporal invariance.
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Editors:

Consider the value function for a special case where the willpower does not fluctuate,

i.e., �2
= 0 and where intermediate rewards are not provided, i.e., µi = 0 for i 2 {1...⌧ � 1}.

In this case, I can show that the solution to the DGMDP in Figure 1b is identical to the

solution to the DGMDP in Figure 1d.

We need to extend this result to the following more general cases, roughly in order of

challenge:

• Allow for nonzero intermediate rewards

• Allow for the case of Figure 1c where µLLa/⌧a = µLLb/⌧b for all a and b,

• Allow for the case where �2 > 0

1. Proof of �2 = 0 and µi = 0 case

In Figure 1b, the value of state 1 is defined by the Bellman equation as:

V (1) = max(µSS + �V (1), �⌧�1
[µLL + �V (1)]) (1)

We can solve for V (1) if the first term is larger:

VSS(1) =
1

1� �
µSS. (2)

We can solve for V (1) if the second term is larger:

VLL(1) =
�⌧�1

1� �⌧
µLL. (3)

Now consider Figure 1d, whose Bellman equation can be simplified to:

V (1) = max

 
⌧�1X

i=0

�iµSS, �
⌧�1µLL

!
(4)

= max

✓
1� �⌧

1� �
µSS, �

⌧�1µLL

◆
(5)

= (1� �⌧ )max

✓
1

1� �
µSS,

�⌧�1

1� �⌧
µLL

◆
. (6)
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Figure 1: Finite-state environment formalizing (a) the one-shot delayed-gratification task;

(b) the iterated delayed-gratification task; (c) the iterated delayed-gratification

task with variable delays and LL outcomes; and (d) an efficient approximation to

the iterated delayed-gratification task, suitable when episodes are independent of

one another.

Note that the two terms inside the max function of Equation 6 are identical to the values in

Equations 2 and 3, and thus the value functions for Figures 1b and 1d are identical up to a

scaling constant.
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